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1. INTRODUCTION

In previous papers (Iglehart and Shedler (1978a), (1978b), (1979)
and Shedler (1979)), we provided methods for obtaining from a single
simulation run point estimates and confidence {ntervals for general
characteristics of 'passage times" in certain closed networks of queues.
Informally, a passage time is the time for a job to traverse a portion of
the network. Such quancities are important in computer and communication
system aucdels, and in this context, quantities other than mean values are
of interest. The basis for these estimation methods i{s the regenerative
method for simulation analysis (Crane and Iglehart (1975)). For an
introduction to and a detailed review of the regenerative method, see

Crane and Lemoine (1977) and Iglehart (1975a).

We consider here the calculation of theoretical values for variaace
constants entering into the central limit theorems used to obtain
confidence iatervals from passage time simulations. Using results of
Hordijk, Iglehart, and Schassberger (1976) for the calculation of mcments
in discrete time and continuous time Markov chains, we calculate variance
constants pertinent to mean passage times. we do this first for the
broadly applicable "marked job method" for passage time simulation which
is based on the tracking of a distinguished !ob, and thea for the
"decomposition method" in which observed passage times for all of tle !cobs
enter into the construction of poiat and interval estimates. The
decompesiticn method provides point and {aterval estimates for a restricted

but practically important :lass of passage times, namely, those




correspondiang to the passage through a subnetwork of the given network of

queues.

The results of this paper provide a firm basis for compariag the
scaciscical efficiency of the two methods whea both apply. The calculations
also permit an assessment of the efficacy of the 2arked !ob method for
simulacion of ''respcnse times' (complete ciscuits ia the zetwork); the
aarked !ob nethod is apparently the only available zeans of obcainiag

confidence incervals for response :ines from a single simulacicnm run.

r 48 ?!EL:HI&ARIES
We cousider closed zetworks of queues wizh a finite aumber of !cbs
(customers), ¥. Ia each zetwork there are a Iiaite aumber 3f service
centers, s, and a finite aumber of jcb classes, :. At each epoch of zizme
each ‘ob is ia exactily omne icb class, dut !obs 3ay change class as they
ob of

traverse :he zetwork. CUpon ccmpiecicn of service at ceater &, a
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(cf. Cox (1955), Gelenbe and Muntz (1976)) with parameters which may depend
on the service center, class of job being serviced, and the "scate" of

the entire system. (We exclude zero service times occurring with positive
probability.) A job in service may or may not be preempted (according to

a fixed procedure for each center) if another job of higher priority joins
the queue at the center. We raestrict the preasent discussion to networks

in which all service times are exponentially distributed, and deal with
distributions having a Cox-phase representation in the usual way by the

method of stages.

As in Iglehart and Shedler (1978a), we view the N jobs as bdeing
completely ordered in a linear stack, and define the vector I(t) according

(1~

2(c) (cj(” IR W R TR

k(1) 3
cJ(’? (:)....,ci’)\:).s‘\:)) : (2.1)
k(s) 1

The linear stack corresponds :o the order of components ia the vector (%)
after ignoring any zero components. Within a class at a center, jobs
walting appear in the linear stack ia the crder of their arrival at the

center, the latest %0 arrive being closest to the top of the stack.

Letting N(t) dencte the positicn {rom the top of the marked iob in

this linear stack, for t20 the state vector of the network is

X(e) = (2(e),N(B)) . (2.2




As Yefore, ve specily the passage time for the zarked job by four subsats Al’

*2' !l. and 32 of £, the state space of the process X=(X(2)::20}. The sets ?
Ay and Az (rasp. 31 and !21 determnine when to start [resp. scop! the clock

aeasuriag a particular passage time for the marked job. Denoting the jump

times of X by (tn:uZO}. for k,a2l1 wve require that the sets A;. Ay 3, and

-

3, sacisty:

- § ' - \
4 4 x(fa-l)‘*l' X(\n)¢A:. X( \(Al and X“u*k"A: k

Ta=lek’

chen X(° <8, aad X(* Yed, for scme O<ask,
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These :ondizicns ensyre chat the s$tart and ter:ination tizes for :the

specified passage ize stviscly alzernate. Also ia terms of chese ‘ump

tizes, we iefine WO sequeacaes of random tizes: 3 140 aad (T ielC,
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We let xn denote the state of the process X when the (n+l)st passage

time of the marked job begins: xn-x(sn), n20. The process ((Xn,P ):n20;

n+l
is a regenerative process in discrete time, and the regenerative property

guarantees (Miller (1972)) that as o+,
(xn’9n+l) - (X,P) ,

where => denotes convergence in distribution. The random variable P is
the limiting passage time for the marked job, and the argument in the
Appendix of (9] shows that che sequence of passage times for any other
job also converges in distribution to the same random variable. The goal

of the simulation is estimatiom of

c(f) = E{£(®)} , (2.3)

where £ is a real-valued measurable function with domain R+-[0.°). We
assume that P{P<D(f)!=0, where D(f) is the set of discontinuities of the

function £.

3. THEORETICAL VALUES FOR FINITE STATE MARKOV CHAINS
Let {xk:kzO} be an {rreducible Markov chain with £ ‘te state

space E#{0,1,...,N} and one-step tramsition matrix

Pe 14,38} .

tpij
For n2l, p:J denotes the n-step transition probability from state i o

state j, aand




For a fixed state ic¢E, ?i{'} denotes the conditional probabilicy
associated with startiag the chain in state i, and Eif'} denotes the
corresponding conditional expectation. For j¢E and n2l, we lat Ba(J)

dencte che ath entrance tize of {xk:kzo} %o sctate i, e.3.,

3,) = ataleal:X =y}

and lac 31(3)-61(3) and 33(1)-d°(j)-én_l(3). a>l.

We considar vectors such as (v(Q),v(l),...,v(N)) =0 be column vectors,

and viav raal-valued funczicns, such as £ and 3, haviag domaia I ia chis

vay. Ualass specified stherwise, the symbol 3I(*} denotas :zhe vector

Ia addicion (for veczaors u and v) the svmbol u'v Jenctas the vecsor

Qv (Q),a(D)v(l), o, u(NM)vY))
Tor a ;atrix A®(a.,a.,...,4 ), wa lat

§ L a
WA ® Joy ® (U3 ,u%a,,...,90% )
0 i 2

Fiaally, for a 3matsix B-Qb),b.....,bnﬁ. we .al

AT ® (L o B 8, &S T

b - Ly R ¢ 8 2

Tor the discresze zize Markov chain {xk:;zc}. we Jonsider tera oalv

Syclas of the Tegenarative pricass Iormed LY ihe suclassive anstvancas o
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state J, and hencedorth suppress tha J ia the actation

For L,'¢X and a%Q,i,..., lat
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0921 = P lapn, X =3},

and set

o n
o * (optj.i.jct} .

We obtain oPl-oP from P by secting the O-column of P equal to 0. It is

easy toO see that oPn is the matrix product of n copies of .P, and that

0

for all n2l 0.

u.
* 040
For any real-valued function f with domain I, the state space of

(xk:kZO}, we define

8,=1

Y, () = ZL_ £(X)

k=0

Theorem (3.1) of Hordijk, Iglehart, and Schassberger (1976) shows chat

[a)

for an irreducible, finite state discrete time Markov chain with traamsicion

aatrix P,
BY, (£)} = (1-.2)" 1z (3.1)
l . 0. - .- -
and
E(Y, ()Y, (@)} = (1-4?) . (3.2)

where h-faE{Yl(3)}*s°E€Yl(£)}-f°3.

Now we consider continuous time Markov chains X=(X(t):t20} with finite

state space E={0,1,...,N}, transicion matrix P(c)={p, (t):i,3¢E} and matrix

pij
of infinitesimal parameters Q-{qij:t.JcE}. The exponentially distributed




holdiag tize iz any state i{¢E 2as Tate paramecer P PPR Tor all ic¢E, we
assume that O<qi<=, i.e., that all states are stable and ncnabsorbing,

and {a addizion that

N
= 4
Thais last assumpction guarantaes that, startiag Ivom any state i€, the
Markov chaia I zakes a transiction SO a next state j¢E. We now Iorm the
juxp nactTix R'{:ij} 9f che chaia, defining the alements :ij according to

qtj/qi if j#i

ij :

Q 3£ =t
We assume that cae jump BatTix R is irreducible (and cherelore positive
Tecurrant). This is aquivalent 0 the cortiaucus tize Ma:kov chaia ( deing
izveducisla. Tor j¢I and a2l, we lat Sa(j) dencte the 2th entrance tize

ef X <o scazte j, L.e.,
3,(3) ® i2f(e>0:X(s=)m;, Kis)mi:
-
As ia the case of discreta tine Markov chains, we TastTict attention

23 vegenarative cvelas formed v the suclessive ancrancas 22 scacta ), and

supprass tha J {3 3ur otatica.

and, ‘oz 220, 2308%ucs che zattix XU frsm R L the saze Tanner as we
Q

feom 2 i3 the discreta iine :ase.

5
®

napprmer—————
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For a real-valued function f defined on E, we define Yl(f) according

L

Bl
¥, (£) -f £(X(2))de
0

and let q " be the column vector

- -

1 -1
= (g

e A

Theorem (3.10) of Hordijk, Iglehart, and Schassberger (1976) shows that
for an irreducidble, finite state continuous time Markov chaia wizh jump

aatrix R-and vector q of racte parameters for holding times,

®
E{(Y,(8)} = s’J‘ P(:)fd:l - (I- R)‘1<f~q“) (3.3)
1 } - | 0
and
£(Y. ()Y, g)} = 5 2 P(:\Hd'l . (I~8) " Lineqg™h (3.4)
\l l\ J o -)0 0 i u‘ so‘, v / o)

where hefeE(Y, (g) '+geE(Y, (£)!.
- -

<. VARIANCE CONSTANTS FOR THE MARKED JOB METHCD

We consider closed netwerks of Jueues and passage times as in Sectien 2.

For 20, the state veczor of the network is
x\:) - (2(:)|}"\:}) )

where (%) correspoads o the linear job stack of Equation (2.1), and N(t)
is the positican ia the job stack of the marked (ob at ctime &, The

process Ye(X(2):t20} is an irreducidle, positive recurreat Markov chain

TR —
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with scace space E. Denoting by L(t) the last state visited by the Markov

shaia X before jumpiag to I(t), the process V={V(z):c20} where
V(e) = (L(®),X(®)) ,

is che Zundamental stochastic process of the passage :ime simulatiom.

The process 7 aas a stacte space, 7, comsissing of all pairs of states

(1,3), 1,3€E for which a tramsicion ia X frcm scate i %o state 3 can oczur
with posizive probabilizy. Siace X is an irreducible, positive recurrent
Markov chaia, so is V. We define subsets S and T of the state space F

accordiag to

-

S = {(kx,3)¢F:kea,, mea,:;
- -

-

& - {(k)a)ei:kssji :(3,:‘ L

.y

Tae ansrancaes af

’\

20 the Iixed sudsec I [resp. T] sorrespend 2o =h

w
el
(]
"
o
w

(Tesp. zermizaticas] of passage zimes fcor the zarked jabi.

As iz Iglanart and Shediar (1973a), we saelact a (fixed) state of S,
desigzated statae J, and assume zhat V(J)=0. To estimate =(f), the narkad
jc0 nechcd prescrives :hat we 2arTy out the simulacion af 7 ia Q=cycles
defined >y the successive raturas o state O; withia 2ach :vcle we racors

the tumber 2f Jassage :times oI the zarked lob and measurs each of thesa

Passage :ixzes.

- e e ki bl i il ikl



We let (Vn:nzO} denote the embedded jump chain associated with the
continuous time process V. The random times {Yn:nzl} denote the lengths
in discrete time units of the successive O-cycles (successive returns to
the fixed state 0) for {V“:nzo}, and we define § =0 and Gm-yl+...+7m, m21.
Then the number of passage times for the marked job in the first O-cycle

of V is

d.,=1

1

M, = 1 .
1 =5 [VJeS}

(For a set 4, l*(x)-l if xeA and 0 if x¢A. Here we suppraess the
argument w.) The sum of the values of the function £ for the passage times

of the marked job ia that cycle is

M,
Y, (£) = f £(2,) .
d & s

We denote the analogous quantities in the kth O-cycle by Mk and Yk(f).

The key results leading to point estimates and confidence intervals
for r(f) are that the pairs of random variables
{(Yk(f),Mk):kzl} (4.1)
are independent and identically distributed, and that
- r ) - ” . » -
r(f) EotYl(f);/_oier ; (4.2)

provided that the quantity £{|f(P)|}<=,




Given Equatioms (4.l1) and (4.2), the regenerative method provides from
a fixed aumber a of O-cycles the so-called classical point estinate (cf.
Iglehart (19730))
?n(£) = Yn(f)/un .
and che assoclated ccafidence intarval for ¢(f) follows from the ceatral

linit zheorem

al/z{sncf)-rm 1
; G(E)/Eotﬁlr

= N(0,1) . (4.3)

dere Y(Q,l) {s a standardized (mean J, variance l) normal random variabple

]

§ and T°(f) is che variamcae of Y, (£)~-r(2)M,.
£

-

Sor calculation of zheoreczical values, wWwe rastrict attenticn 2 the

2ean passage :ize; :hus, the Zuaction I i2 the Zefiniziocn of z(I) i3 =zhe

identisy Zunccicn. Using cthe resulss of Section 2.1, we shew 1cw o ssmpute

the value of :the nean passage time r and the correspoadiag variance

/ y A z e A -
coustant - appearing in che ceatral limit cheorem of Iquatiom (<+.3). These

calculations Test :n':ho-dcfiaicion of TWo paczticular Sunctions (Jdemotac

” ® . N
£ and g ) having domaia T and takiag values ian the set (0,l;.

/

uccsion £ o be the iadicacor Sunctiom, i of zhe

“e delize :the

2s8,2',8') . (w.9)

LS\
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Proposition 4.1 follows directly from Equations (3.1) and (3.2).

PROPOSITION 4.1. Let f bae the function defined by Equation (4.4), and R

the transition matrix of the discrete time Markov chain (Vk:kao}. Then

§, =1 1
® 3 . » " -1, *
and

r L] 2\ & S -l ®
i S((Yl(f )) H (I 0&) L\ ’

where 51 is the time of the first return to the state 0 in (V, :k20) and

k
~ « LR R
h =2f 'E(Yl(t Y=g o

We use this result and the defianition of ML to obtain the quantities

> ¥ bl
£y, 1 and EO\MI} according to
e % e 283 g
EotM;. - !0\\L\f : (e.8
and
. A & 3,
SO\ML) - EOR\Y;\f Dy \e.8)

«
For an element (2,n,2',n')eF, the value of the function g is L Lf a

passage time for the marked !ob starts or is underwvay when the
configuration of the fob stack is 2' and the marked job {8 {n pesition a',
and {s 0 otherwvise. Formally, iet U le the state space of the process
eotl(t)it20}, and dencte by ¢ the set of \center,class) pairs in the

network. We define a functicn W taking values in U and haviag

demaia i&:l.:..‘.,N} as follows.  Tor 2ed and lsasN, the value of h(2.a)




o SRS L~

is (4,)) wvhen the job in position a in the job stack 2 is of class § at
Centar {. Now consider the embedded jump chain (Vk:kzo} associated with

the coatinous time Markev chainm Y. For states v',v'¢F, the state space of
(Vk:kRO}. ve write v'As v" when v" i{s accessible from v', {.e., when for some
a2l, the probability starting from v' of entering v' sa the ath staep is
positive. Similarly, for any subset L of [ we write v’ i& v' when v" is
accessible from v' under the tabeo L. This aesns (cf. Chung (1967), pp. 3,

43) chat for scme n2l, there is a positive probabili:y, starting from

state v', of enteriag v" 9a the ath scep under the restriciion that acne

of the states {a L i{s entered ia Yetween (exclusive af both ends).

Dencting the set of (centear,ilass) paiss {a the netwerk by C, we define

4 subset G aof C accardiag o

G = {({,§)eC: for some (2,a,2',2"')e$, a(z',a")e(L, )} v
((L,3)¢C:  for scme (2,3,2',a")ef=(SuT), v'¢S and v'¢? ,

£ 2 T Y \
v' Ao Ca,a,2Y,8Y), (2,9,2',a2') AoV and B(s',a')=(,3))

Thus, the set G-GL;G,, where a (center,class) pair is ia the set G, (resp.
'Y -~

be of llass ! at center { when

-

G,] 4f Lt {s 208sible for the nacked ‘ob =0
the passage tine speciliied Sy he sels Ay Aay, 3., and 3. scarts [resp.

-

is undersay).

" <
New, far (2,3,3',a')¢T, ve define the functicon § as

\ ' ‘
® Lallils 8 ) . (e,
2
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Then wve have

PeE————

®
PROPOSITION 4.2. Let g be the function defined by Equation (4.7), and R
be the jump matrix and q the vector of rate parameters for holding times

in the continuocus time Markov chaim V. Then

8
E(chs')} - :{J; 3 ;'(V(.))d-} = (x-oa)‘l(.‘.(l) ,

and

1

s, " - - tat™h

wvhere 51 is the time of the first return to the state 0 in ¥, and

n'e2e"eg(y, (g1

Proposition 4.2 follows directly from Equations (3.3) and (3.4). We

i

!
if use this result together with the observation that
|

M
5l 1
J; g (V(s))ds = E 2, s (4.8)

| to obtain the quantities

‘ MI "3 a.9)
!°l4§ 9” = Ey(Y, )} (4.9)
and
3 M 1
£ }2 pJ “ - zo((\'l(g'))‘} " (4.10)
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Using the ratio formula, Equations (4.5) and (4.9) yield the guanticy r.
b
To obtaia an expression for the variacce cconscaac o° appeariag in the
central limit theorem (Equatiom (4.3)) for the marked iob methed, we require

cne additicnal cesult.

PROPOSITION «.]. Lat R be the jump :atrix and q the vecter of rate
paramecars for holding times ia the continuous tize Markev czhaiz Y. For

- ®
the functions { and g3 defiaed by ESquactions (4.4) and (4.7),

3 * : . -
Ef Pt viends 3 :‘(vk,\‘ - (=0 7h",
Q

. ] -

i L e UL T e L P
where a1 =((I-R) “f lag aq *[QI-OR) (8 °Q ") ]°f =g 9q “of |

Q

The proef of Preposizion «.3. is ia the Appendix.

“We use chis resul: o obtaia

[#2

‘ ¥, ‘ : 5, =1 l
S -
Eal z . “') . lf B RUONTID IS (4.10)
Q

P & ’

i » ¥ | L e e ST et S S . s NS
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When ccmparing the statistical efficiency of the marked job and
decomposition methods, {t is convenient to have a central limit theorem
comparsble to Equation (4.3) dbut in terms of simulation time, t, racher
than aumber of cycles, n. Let a(t) be the number of passage times
completed by time t, i.e., in the interval (0,t]. If we denote by n(t) the

aumber of J-cycles completed by time t, then from renewal theory, as t+e,

ace) | 1
t Eo{alf

with probability one, where EO{GL} {s the expected langth of a O-cvcle in
V. This implies that for large t, the number of O-cycles completed dy
time t is approximately :/Eo{al}. Combining this result with Equation («.J),

it follows that as ==,

L/A -:L uc) l
e {me)? (: £(P,)) —r(t)
i-

r-> NCIPS)

(2, {a, DY 35¢8) 8. (0, )
ol%y! I8g\¥4y !

This resul: is independent of the initial state V(0). Since the numerator
in this central limit theorem is independent of the state 0 selected to

form cycles, so is the denominator. Thus for the 2ean passage time,
o In 154 %10 tx \
- [~y Y U D ; u'a;
e = ( O\al’) g 0‘“1' \eid)

is the appropriate measure of statistical efficiency for the marked !ob
aethod and is independent of the state ¢S selected t¢ form cveles. Note

that we obtain the quantity Eoial? according to
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where 1 is the £ function ideatically equal to ome and

Ly

3
By, (L)} = s{f : l(V(s))ds} - (t-oa)'lcloq
0
S. VARIANCE CONSTANTS TOR TEE DECOMPOSITION METHOD
We now turmn to the deccmposicion method. As ia Shedler (1979) we
label the jobs from L ¢o N, and for i=1,2,...,N, demote by N-(c) the
posizion of job i in the linear job stack at time c. Thenm, ia terms of the

vector Z(t) corresponding o the job stack, we set
x2(e) = (2(2), ¥ (2), ¥ (e),. .. ()

0_..0, , - .

The process L =13 (t):t20; 43 an irreducible, positive recurreat somtiaucus
: o9

cizme Markov chaia with scace space = .

0 e

We lat L' (t) demote the last sctate visited >y che Markov chaia before

(]

jumpiag ¢to Xo(:), and for t20 define

vy = %), %)

o
e
®

- 0 + 3 . . ]
The process 7 =(7(2)::20} is the Zundamental stochastic process of
Jassage ctine siaulaticn.

v : T SR, ¢ i g <0 :
we denote the state space of 7 oy 7  and defize the subsets 3 aad

:0 of ?O acecordiag ©o

:70~

§° = {(3'“1""’3V'=":;""’=§> £3r some < ,
(2,20, and (2%,30)¢a,"

aad
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ro - {(‘lnll"'inuo"pnin"'Dn“')‘rO: tor some ".
(x.nk)¢31.-and‘(:‘,nﬂ)c!z} .

The successive entrances of !0 to the fixed subset s° of 0 correspond to
the starts of passage times irrespective of job identity, and the entrances

of !0 to the subset To correspond to the terminations.

The decomposition method applies to passage times for which the sets S

and T (which define the starts and terminations of passage times) are

Q

disjoint. Denoting by (Pn:

a2l} the sequence of passage times (irrespective
of job identity), enumerated in order of passage time start, by the
argument in the Appendix of [9], Pg-oP:. and the gcal of the simulation

is estimation of

) - (22} .

To estimate :0(2). we carry out the simulatiom of the process Eo in
random blocks defined by the successive antrances of the process to the
fixed set of states Co. Entrances of Eo to the set :0 correspond to the
terainacions of passage times (irrvespective of job identicty) which occur
when no other passage times are underway, and which leave a fixed

configuration of the job sctack. Formally, recall that C is the set of

(center,class) pairs in the network and define a subset H of C according

€0

He {(({,])eC: for some (z,n,2',a')eT=5, h(z',a")e(i i)} v

.{(1.3)(C: for some (2,a,2',n")¢F=(SuT), v'¢T and v"e¢S ,

v Fi‘ (z,2,2',0'), (2,n,2',2") A" and hiz',a")a(g,3)} .
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Thus, the set 3-81u82 where a (center,class) pair {s ian che set El [resp.
32] if {t is possible for cthe marked job to be of class i at center i when

4 passage time for the marked job specified by the sets Al' A and B

20 By 2

tarminatas [resp. is 2ot underway].

Now defize a subsat D° of D, the stace space of Z={Z(c):c20}, according

Co

D0 » {2¢D:b(z,n)eT for ISasN and Sor some n.;h(t,:)tal} .

Elements of che sec DO correspond =0 coufigurations of che job stack upen

teraization of a passage ctime with 10 other passage :tizes underway. The

sat Do is donempcy Secause SNT=9, and thus the set I, is aomempey.

P L
Therefore, 7e can selac: an element zo 0f D7, and (i{a terms af chis Zixed

zo) define zhe set g0 accordiag to

0 .
T o= {(z,nl,...,:I.N,:',ai,...,:y)sf :

-0 s & i
where T is the subset of :0 correspondiag to che tarminatiocns of passage

tines.

PR Q . ; L
For k21, T denctes the lang:th i discreca :zime uniss 3¢ the Xzh bdlock

g 50 g -..Q . S 3 3 X : ;
(recuzzs 2o :he sec U”) of the process ;4;:a20;; the lacter is :the ampedded
Q.19

. 0 : N &
jump chaia associated wizh V7, and we set S.=0 and c=-7=¢...vvg, a2l. we

b

Q
o)

"

o s 5 PAIRSTH o SR g s
assume :hat V (0)eU” and denote dy &n the aumper 2I fassaie :tizes iz the
o)

KV b Q 1 ;i
ach block of che process 7 . Also, we lat a\:) Ye the sum of the

O

s ) \ : . < 3 o
quanticias $(?7) over :the passage :tines iz tae zch bHlock of

77 The xav

L.4] laadizg =0 poiact astizaces and confidence iacervals ‘st
0 o

the guansizy 2 (£) are that che paizs 3% -aadom vaziables

resuszs of




2l

0 0,.
{(Y'(t).x‘).azl} (5.1)

are independent and identically distributed, and that

0 0 0
r (f) =B {Y (£)}E (K} , (5.2)
01 40 5

provided that the quantity E{}E(P°)§}<~. The symbol E.O{'} is an abuse of
our pravious notatiocn. It connotes conditional cxpoc::tion associated
with starting the Markov chain !0 in one of the states in the set Uo. The
definition of the set Uo implies that the conditional expectation is

independent of the particular starting stace in Uo.

Given Equations (5.l1) and (5.2), from a fixed aumber of blocks of zo,

the decomposition method provides the point estimate
A0 30,:, 30
rn(f) = Yn(.)/Kn .

and the associactad confidence intarval for rogf) follows from the central

limic theorem

/9
n"'(e§<f)-:°(f)}

—E e = §(0,1) . (5.3)
.8 \f)zscoxklr

The quancizy (¢°(£))° is the variance of Yf(f)-r°<f)xg.

Taking £ to de the identity function, we restrict attenticm o the
aean value to and consider the associated cheoretical values. 3y the

argument which leads to Equatiom (+.ll), an appropriate Teasure of the

statistical efficiency of the simulation is the quantity




Q e 0y\1/2 Q, R 1Y S
e = (! O\GL:) e /8 01‘1: » (5.%)

vhere 32 i{s the length of & dlock in the comtiaucus time process 20.

The iadividual quanticties required 0 compute this zeasure 3f
efficiency are defized in terms of the successive returns of the process 20
20 a fixed sat 3f states gto) vather than o a single state. Movaeover,
the successive eatrances of 20 S g0 are 20t regeneratica poiacs for Eo‘
Accardingly, it is not possidle 0 apply the rasults of Sectiom 2 directly,
as we did far the zavtked !ob nethod. We can, howvever, selact a fixad
state (dasignated staca uo) from the sat 30 and scmpute the Qquancily .
correspendiag 2o Iquaticm (3.3) for chae rasul:iing uo-cy:las. Note tha:z
e suciessive eatrances of the procass 30 3 the fixed stata o0 are
regenerazion poiacs for the process 30.) The expression iz Iquatiom (5.s)

9
computad Ior u -cvelas i3

9,9 0y 1420 N
- N - - - - e :
e (3 ) - \;uv'.l.. ‘\) :.u» -\.. "
N 3 5
" ) 3 i N ~ -
vhere the coustant :5 (ARALOgous 20 O7) is defized for uTecvelas. This
2.0 d : : ) ,
QUANSItY @ (U ) &8 equal 20 @ . To see :this, dor 220 lat 37 1) sae tha

aumber 3f passage tinaes (irvespective of (obd ijentizy) completed i tle

N tize, T, ve Yave e canIva. .imi:

-

iztarval J,%.. Ia taras 3f simulac

saecTen
N
g \

. - - e | \= - \ \ 0 LR Y \.

-t - 34 5 - v\ 2 Y\ | =¥ @y - AT T L R .<~> -y “ \

- \ - -\, - e N - - - A v NV - »
- - - - - -
1., - -

and, vhen ¢ is che ildentisy funciicn, the vasiance :3nstant {a the

de20cminatar s the quaatisy ¢, ThaeTe i3 a similar centval liadt thettem

= 1 ——
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in terms of uo-cyclca; the numerator is the same and the variance constant

in the denominator is ooguo). Siace the numerators in these two central

limit cheorems are the same, as are the limiting random varf{ables (N(O.L)).

e must equal co(uo). For a similar argument, see Propositicns S..1 and

5.6 of Crane and Iglehart (1975).

Next we cbserve that the aumber of passage tizes in a uo-cyc.‘ of the
process !O. as well as the sum of the passage times in a uo-cycla. does
aot depend cn the identities of the jobs in successive configurations of

the job stack. It follows that we can work with the process W={W(:)::20}

g e, .

defined dy

Wit) = (R(2),2(t)) .

Here I(t) corresponds to the linear jcb stack, and KX(t) is the last state
visized by the Markov chain Ze={Z(t):t20} defore jumping to 2(t). The

process 5 is an irteducidle, positive recurremt continuous time Markov

chain with a state space that is a subset of OXD. Note that in general

% . ¢ w0 e
the state space of W is much smaller than that of V7, and that working

with the process &y is computationally advantageous.

The computations rest on the definition of two particular functicas
(£ and g) defined on the stata space of W and taking values in the
{0.1) w - & : £ 3 - & & .3 20 ; 39
set 10,1}, We define the functions f and g in terms of functicms & and
{ Y

\
defined on 7, the state space of the process | . We take the fumetiom £

€0 bde the iandicator function, 1 9 of the set 3  which defines the star:ts
S
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of passage tizaes irrespective of iob identizy; i.e., for

(z.nl.....nu,:',ni......a&)e?o,

20(3|nq) "'va\‘oz'vai-'-°l

a&) - Lsoiz.nl.-.-.nx.z'.ai.---,nﬁ) .

i 8
-

Thus

& passage tine Ior some job starcs when 23 tits

20

- .Y‘.

(z,n.,....nv,:‘,a:,. ...n&), then

l,...,ax,ai...., and

(z.a,....,nv.z',n;,...,né)efo. For such a (z,z2'), we dafize

Ncte that for each (z,2') ia zhe

state space of 4, cthere axisz 2 2y Such thac

1
Tty
-

0 o
£(z,2') = ¢ (z.al,...,nv,z',a (5.

ay) -

The Ifunczion is well defined siace, for fixed z and z', :=he function ¢

is iadepencen: 2f i:s ocher argumencs.

Tor an element (:.a.,....av,z',ni,.‘.,ni)cfo, the value of :zhe

- o . X "
funcsiom 37 is che =5 ol

aunter oI assage

3)

0

Siles that starsc or are indervay when
t2e cafiguratism of oh job stack is :'. Formally, for
’ o | ' ¥y -0 - e )
i 203,000, 2 139000 ETT, ve dedizne
3 9 N
F (:,a,.....nv,:',nl,...,") - L (MEE"0)) -«
~ § & N o R T T oy
K=l
Thez, Ior (z,2') ia the state space :f ¥, we set
3(2,2') = ;Q(z.:,.... Wb ol gt sy (5.5)
\ 2 4 v'\.‘ L, . )'\“v/
Tie jussificazica far 4Sing the process ¥ LS that the aumber oI rassasze
J Q
times (wnlill start and terminate) i she firss ¢oecyele of UT is
[WE——_
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Eé;l
(W)
=

and the sum of the Passage times {n the firse uo-cyclc of zO is

Y
1 f g§(W(s))ds .
; 0

Here :1 [rasp. xll is the time of the firge return of the Process W [resp.
the jump chain {wi:kzO}] t0 the fixed scate °

« The recurn state wo
CorTesponds td the fixed scate uo selected from the set Uo, l.e., if

u0 - (z.nl,....n

0 '
a'? .ni.....nN) i
then w°~(z.:°)-

By direce application of Equations (3

1) and (3.2), we have

PROPOSITION 5.1, Let £ ve the function defined by EZquation (5.5), and R

be the Cransicio discrete time Markov

0 natrix of the chain {wk:kzo}. Then

K, =1
l z
E(Y, (£)} = £, )0 = (1= R)"L¢
L Iégg - 0
and

caud : -1
E((let)) } - (I-58) "h

where X1 is the time of the first return ¢o the state w° in (wk:kzo} and
h-:easilef)}-taf.




g
!
|
f

From Proposition (5.1) ve cbtain I o(&g? and E oi(tg)'? according to
'} g
e (&) e (¥, (o) (5.7
0 lhhan g 2 fals & ’ ;
g v
and
r (,(0)2\ «r {(Y .,))2\ ($.3)
oo e st Sl el :

3y direct applicacion of Iquactions (3.3) and (3.9), wa have

PROPCSITION 5.2, Lat 3 be the function Jefined Sv Iquacion (3.8), amd R
de the jump 3atTix and § the vector of rate parameters or holding times

{a the contiauocus tize Markov chaia ¥. Then

- 1

: ) S ; ) S |
ElYL(s): - S;J. o 3\?\:‘?4:( ) \:-OR\ g9 ")
0

and

b |

T e

Al
BCE, (g))°) = (-

V)

. . T
vhere I, 13 the Iime of the Iirst refurn O Ihe sfate v ia ¥, aad
hellef ¥, (3) !,
.

@ Juse :hiia cesul: 0 obtain

and

@)
) 93\ . 1Y, @) ($.9)
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Using the ratio formula, Equations (5.7) and (5.9) yield the value of

ro. Analogous to Proposition 4.3 we have

PROPOSITION 5.3. For E{Y,_(f)} aad 5{11(3)} given by Propositions 5.1 and

5.2,
<,=1
3 1 -
zzf Lgtia)ds 3 ”"’k))' - (-7,
0 i ‘
vhere h-(3°q‘1)°E{Yl(£)}+f°E{Y1(8)}'(3'q-l)°f.
We use this result to obtain
0 )
K K, =1
I/ (
0}.0 fl , i
E Y)Y, = £ g (W(s))ds t W) (5.11)
c°l ,1?1 ! lf %o =N

and an expression for the variance constant follows {rom iquations (5.8),

(5.10), and (5.11).

6. NUMERICAL RESULTS

We consider the closed network of queues of Figure ! and the limiting
passage times P and R therein. Upon completion of service to a iob at
center 1, in accordance with a binary-valued variable ¥, the job ‘!oins the
tail of the queue in center 1 (when Y=l) or joins the tail of che queue in
center 2 (when y=Q). Neither center 1l nor center . service is sublect to
interruption. We assume that both centers provide service according to
a FCFS (first-come, first-served) queueing discipline. The limiting
passage tine ? {s associated with the time measured from entrance by a lob

into the center . queue upon complecion of a center 2 service until the !ob

lext enters the center 2 queue. Similarly, the response time R is associated




T -

8

wvith the time bdetween successive entrances of a job {nto the center 1 queue

upen completicn of a centar 2 service,

We 3ake the assumptions that (i) service tinmes at centers 1l and 2 are
sutually {adependent and (ii) successive servi:e times at center { fora a
sequence of 1.i{.4. randcm variables expcuentially distriduted with rate
parameter XL, i=l,2. 1Ia additiocn, we assume that the routing variable v is
a deraoculli random variable, and values of U at successive completicas of
sarvice at center 1 form a sequence of {.{.d. randem variables, iadependent

of the service tizes at centaers . and .. We denoCe HY p the probability

that the routiag random variable ¥ takes the value L.

Since each center sees only one cb class, by takiag {atc acccount the
f{ixed aumber of jobs ia the anetwork, for 220 we caa defiaze I(%) to de the
aumber of lobs waiting or {n service it cencer L at time . Then :le
process {e0(I(8),N(2)):220}, where ¥(I) is the pesiticn 2f the zavked ‘b

in the !ob stack at tine I, has state space

E = ((L,8):3s4sX; L1sisX} .

sy
o
"

the passage tine P, che sets A, aad A, defiaing the starts of
-~ -

74ssage tiles are

aad
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E
P —

Similarly, the sets Bl and Bz defining the terminations of the passage

time P are
B, = {(4,1):0<4sN} ,
and
8, = ((1-1,1):0<tsN} .
For the response time R, the sets Al and Az are the same as for the passage

time P, but Bl-Al and BZ.AZ'

In connection with the marked job method, the continuocus time
process Y={(L(t),X(t)):c20}, where L(t) is the last state visited by the

Markov chain X before jumping to X(t), has state space F, where

F e {({,1,1+41,3+1):0s4<N, 1sj<N} u {(4,N,1+1,1):0s4<N} u

{(1,3,1=1,3):0<4isN, 1s3sN} u {(L,1,1,1):1<4$N} .

The subsets of F defining the starts and terminations of passage times

for the marked job are

S = {(i pN'1+1,l) :0$1<N}

and

T e {({,4,1-1,4):0<4sN} .

Tables 1 and 2 give theoretical values for simulation of the closed

network of queues by the marked job method. Numerical results are
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displayed for the mean of the response time R and correspondiang rasults
for the passage tinme ? are in parentheses. Tor the case of Nel jobs
(Tabla 1), the set 3={(0,2,1,1),(L,2,1,0)}. Wich A

el, \,=0.5, and p=.75,

i :
the aumarical resulcts shov that on the average O-cvcles defined by returus
to the scate (0,2,1,1) are cwice as long as those defined by the returns
to che state (1,2,1,1). YNota that as axpected, the quantities czﬁsoixl}
(as well as (Eo(al})ljza/soixl}) are the same for the twe retura stataes.
Table 2 gives results for N=é !obs. Here there are four pcssible return
states, and for cthe sarameter values selected, returns to the

scate (3,4,4,1) occur acst frequently, and on the average eight times aore

often than raturas 0 cthae state (0,4,1,1).

We 20w turn to the deccmposition asthod. The procass

as state space So, where

o » Ly . 3
£ = :gi.al.....nx):OsLsN. “nl""‘aN‘N’ ai-n: cor isy)

; Q_:..0 \
The uaderlying contiaucus tize process (T eV (t):t20! defined by

2 | {
& s Q, .0, = »
vi(e) = = &) u( (%))

Q

.

where L7 (3) is the last state visited Oy the Markov chaia §

- KJ\:). has state space FQ.

sefcre lumping

¢ 50

The subsels © defining starts and

seraizaticns of passage tines are




il

s° - ((1.n1.....nu.i*l.ni.....n&):0$t<8; for exactly one j' ,

¥ ats ' "
nj.-N and nye 1; lSnJ<N and nyen,+l, %3 “k*nj for kejl

TO - ((L.nl,....nu.i-l.ni....ng):0<1sN :

lsa,=n <N, for lsjs\N; nkﬁn

\
J J for k*j: .

J

The process Z={Z(t):t20} has state space D={0,1,...,N}, the set o°-{0}.

0

and the set U defining cvcles of the process !0 is

. " . - 1
v \(l.nl....,nN.O.nl....,nN).lsnl,...,nNsN. nt¢n for {¢3} .

i

The state space of the stochastic process W is

~

t {(4,4+1):0s4sN=1} v {(4,4=1):1s8gN} ,

and the state wo-(l.O).

Tadle 3 gives theoretical values for simulation of the closed network
of queues by the decomposition method for the quantity E(P!. The table
gives results £or Nel to Ned jobs, and the parameter values are the same

as in Tables 1 and 2. For Ne=2 jobs, the value of the quantity co\uo)-co

which measures the statistical efficiency of the decompositicn method is

16,546, The corresponding value from Table 1 for the marked :ob methoed is
20.890. Thus, for these parameter values the decomposition method s
approximately 21 percent amcre efficient than the marked job zmethod. For

Ne4 jobs, the deccmposition method (s 4l percent acre efficient.




n

Numerical results pertaining to the statistical efficiency of the
deccmposition :ethod in simulaction of the closed aetwork of jueues appear
in Table 4. For Nel to N=é jobds, tha.tablo gives thecretical values of
the quantities ro and .0 for three sets of parameters values. We hold the
value of XL-L and p=0.’S fixed, bdut vary Xz. Table § gives a ccmparisen
of the statistical efficiency of the smarked !ob and decompositzion methods

for the same sets of parametaer values.
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TABLE 1

Theoretical Values for the Marked Jodb Method.
Passage Time R (P) in Closed Network of Queues.

*2. Xl.lwo' AZ.OQS‘ P.O\?SQ
Parameter Return State of Ve{V(t):t20}
(0'2’1)1) (1’2’1.1) !
fF
| E,{a;} 26.0 12.0 i
I |
| i |
E, P, 28.0 14.0
lg-x ’ (20.0) (10.0)
B (M} 3.0 S
e R (1.5)
- | | |
E zf P.(/EyMy} | 9.333 | 9.333
A i) o | 6.667) | (6.667)
, 1 |
| | i
! s 7
. ¢ | 140.267 j 70.133
i [ (129.067) ; (64.533)
|
| a?/g 0, } | 46.756 46.756
,' | (43.022) ; (43.022)
| | |
L (5ytay )2 armying) 20,890 20.8%
' (20.038) , (20.038)




34
TABLE 2 E
: f
! Theoretical Values for the Marked Job Mechod.
| Passage Time ? (R) in Closed Network of Queues. :
§ Vo4, \.®1.0, A,®0.5, p=0.7S. ,
:' 1 2 §
c i
1 N f
g ! Parameter Return State of Ve{V(t):c20} :
; | | :
3 | 10,6,L,1) | (1,4,2,1) (2,6,3,1) | (3,4,4,1) 1
a i ,
£ {a,} | 216.0 | 108.0 | s4.0 7.0
e | | : |
f ! E
v | 1 |
| !
501 5 P, | 248.0 |1 S 61.0
j=i i (196.0) ! (98.0) L (99.0) (26.5)
? | | |
i | | |
i By} | 15.0 | 7.5 | §.7 1.875
i 1 (3.0) : (7.5 | (3.7%) (1.87%)
| |
! | | &2 x i
L S 2 Py(/Egly} | 16.53 16.533 16.533 16,533
3 l;-x : 1 3.087) (13.067) (13.067) (13.067)
| § |
2 | | ‘;
33 | 2111.363 | 1085.672 17.336 263.918
1(2139.600) | (1069.300) (§34.900) (267 .<30)
I ! |
i‘ z
:gxsoix,‘ | 160.7%¢ | 140.736 140.736 140.7%6
! X (lec.8eQ) i (lés,.684Q) (ave.8ul) (Lea.Bul)
! ;
ixal2 ]
Sato 21" 34/ 8y F ) 48,24l 48,241 48,241 63,248
gty (68.%62) (48.362) («3.362) (ad. 362"




TABLE 3

Theoretical Values for the Decomposition Method.
Passage Time P in Closed Network of Queues.

A;°1.0, 1,%0.5, pe0.75.
1
Parameter Nel Nw2 i Ne3 r Ne4
| SRS
E o} 6.0 Mo 900 | ——82:0
u ; 5
| |
% l ?
0 E
E ) L PJ’ 4.0 200 | 68.0 196.0
u' j=l ;
|
g E oK) 1.0 . & 7.0 15.0
by ;
| o |
| e | i
LB & By(/E 4.0 6.667 | 9.714 13.067
| u lJ'I ’ u . |
i | | |
: ! : ‘
| (@p? 16.0 176.0 | 1023.673 | e317.227 |
| | | |
i i | f
| @ %e L ix% 16.0 58.667 146.249 | 287.818
5 et |
| : |
(e olath2 ofre (e 9.798 | 16.546 |  25.035 |  34.491
i S : b | | |

i
|
§
1
|
]
L]
!
i
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{
| TABLE &
Statistical Efficiency of the Deccmpesiticn Mathed.
Passage Time ? ia Closed Network of Queues.
| ! |
! ? = 0.75 | peo0.s p = 0.78
| A, s 1.0 | A =10 A = 1.0 |
‘ IRFRERE | A7 =0.28 \l e 0.5 |
f ' - -
F oo i !
i | |
i A : ro .0 ro ‘0 ; ro ‘0 ‘
ey | | |
L1 | 40 13.856 | 4.0 11316 | 4.0 9.798 |
| : ' | i
25333 19095 6.0 17666 | 6.667  16.546
| 6.286 27380 | 8.0  26.128 | 9.7  25.038
| 6933  35.189 | 10.0  36.606 | 13.067  34.491 |
| 7.355 42,597 | 12,0 49.107 | 16.643 44296 |
| 7619 49,068 | 14,0  63.645 | 20.381  se.02




TABLE S

Relative Efficiency of the Marked Job and Decomposition Methods.
Passage Time P in Closed Network of Queues.

1
p = 0.73 p=0.78 0 ® 0.75
A = 1.0 \, = 1.0 A = 1.0
8 | aleoagas | aleo.as A} = 0.s
L |
| 1 !
;
' 35 ool 1.0 1.0 1.0
2 1.190 ' 1.189 1.211
3 1.207 1.224 1.319
5 1.190 1.209 1.408
|
b 1.176 1.196 } AR
{
sy 1.39 1.162 * 1.597
L =k }
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This appendix is devoted =5 a procf of the resul: given in
Zquation (3.5). Recall that X={X(z):220} is a contiaucus state Markov
chaia with finite state space :={0,1,2,...,N}. We assume ¥ is irreducible
and hence pcsictive recurreat. The 3ean helding time iz state is q;l and
the ambedded jump chaia {Xn:nZOF 2as cransitiom matrix R. Agaia £ and g

are real-valued Zunccicus defized on E and we view them as column vectors;

e.g., $°(£(Q),...,2(N)). We take O as the recurn state and as Seiore let

O
(20

3, daenocte the :tize 3£ first entrance 2f { o O and 51 dencce :the :ize
firsc emsTaaca of (X :a20} o O, lac X(9)=0, 7,0, and T (azl) de tte
randcm tize at which the ath tramsiticn of X takes place. Siace ¥ is

irreducibla aad £ is finica, . wich probabilicy one.
PROPOSITION. {nder the :onditicms above

‘ 1 ‘-

- e - .
= kg roranya RV o -1, G 10
£ zj; £(X(s))cs 2 g\xn, ‘ a (I ‘JR) o (& d)




Proof. First we decompose the expression in Equation (A.l) as follows:

=l

8 §,-1 §
t(xn) (tm_l-Tn) u;) 3(Xm)

"

1
f(X(s))ds gX ) =
i 5 s

1

ae!

- n}: 5) EX ) (T, tn)1{61>n}3(x )1{6 o

=Q
'Zilb '3 Z.b =X ab ., (AD)
n=0 m=Q n=0 men a=Q 0

where a and bm are definad in the obvious way. Now take expectations on
both sides of Equation (A.2). We compute the three expectations on the
tight-hand side of Equation (A.2) separately. The interchanges below of

EL and E can be justified since the process X is positive recurrent and the

state space is finite. First the easy term:

[ | )
EL( Z 2% J 3 E&' Etlfc‘n)‘(xn) L(61>n} “mlqn)‘

1
R ISR R ISR R CREO |

1 n+
- i ‘t(\) (‘c )1, E -t |x -an})
g 1( 8 {8 >n1 L Tatl nl‘j' |
- z E .\‘{ )3\'( )lio 4 \q‘l)
n=0 it
- t £(X )q‘( 3(\ \)
n-O

From Equation (3.1) we can conclude that

e R T T e R
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!%i". a,b,} - (=) TH(eeqThg)

(A.3)

The firsc term on the righc-hand side of Squacion (A.2) is handled in a

similar fashion. After conditioning on (Xj:jsn} as above, we have

s"tz t - 2 i E, :cx n e \x Mis 5q188g) L !
o= a=)

a0 =0 L3y >a; {8 >ul}

titcd“.

n-O a=Q

Now iaterchange :he sums and nake a change of variablas o obcain

»

P
ZO Z o i‘ J ‘v ik‘)‘kﬂ\i \‘)
a=

»
Since }: oa’-\':-oa)‘l. we conclude zhat
as)

(Acd)

The second zem on the right-hand side of Iquation (A.l) requires a somewna:

<
-

i2%ezea: :2ndizioning arzumen:.

e ———————




vor mhesare e

e

4l

l

=

a=(0

- E ‘: {a.b__|x 'jsm)l
-Z_;J L)t nm' 3 |
= -1

.¥o t‘q““n)l{slm}" (xn)‘(xm”(slmm}‘
-

. T e s .
\\;0 a=0 j¢E k¢E ¢4 03k

Proceeding as in Equation (A.4) yields

L ®
. -1 -1 -1
£ T oad = (I-R) ([u— R) ;iotoq ) . (A.$)
Zi aen 0O Q )

Combining Equations (A.3)-(A.3), we have Equation (A.l).
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Figure 1. Closed network of jueues.
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